GN-233

V Semester B.A./B.Sc. Examination, December - 2019
 (CBCS) $(\mathrm{F}+\mathrm{R})$ (2016-17 and Onwards)

 MATHEMATICS - VI

 MATHEMATICS - VI}

Time : 3 Hours
Instruction : Answer all questions.

PART - A

Answer any five questions.

1. (a) Write Euler's equation when the function ' f ' is independent of x and y.
(b) Find the curve $\int_{0}^{1}\left[12 x y+\left(y^{\prime}\right)^{2}\right] \mathrm{d} x=0$ with $y(0)=3, y(1)=6$.
(c) Find the function y which makes the integral $\mathrm{I}=\int_{x_{1}}^{x_{2}}\left[1+x y^{\prime}+x\left(y^{\prime}\right)^{2}\right] \mathrm{d} x$ an extremum.
(d) Evaluate $\int_{\mathrm{C}} x \mathrm{~d} y-y \mathrm{~d} x$, where ' C ' is a line $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(e) Evaluate $\int_{0}^{2} \int_{0}^{1}(x+y) \mathrm{d} x \mathrm{~d} y$
(f) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
(g) State Gauss Divergence Theorem.
(h) Write vector form of Green's Theorem.
P.T.O.

PART - B

Answer two full questions.
2. (a) Prove necessary condition for the integral $\mathrm{I}=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) \mathrm{d} x$, where $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$ to be an extremum that $\frac{\partial \mathrm{f}}{\partial y}-\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\partial \mathrm{f}}{\partial y^{\prime}}\right)=0$.
(b) Find the extremal of the functional $\mathrm{I}=\int_{x_{1}}^{x_{2}}\left(y^{2}+y^{\prime 2}+2 y \mathrm{e}^{x}\right) \mathrm{d} x$.

OR

3. (a) Show that an extremal of $\int_{x_{1}}^{x_{2}}\left(\frac{y^{\prime}}{y}\right)^{2} \mathrm{~d} x$ is expressible in the form $y=\mathrm{ae}^{\mathrm{b} x}$.
(b) Solve the variational problem $\delta \int_{1}^{2}\left[x^{2} y^{\prime^{2}}+2 y(x+y)\right] \mathrm{d} x=0$ with the conditions $y(1)=0=y(2)$.
4. (a) Find the shape of a chain which hangs under gravity between two fixed points.
(b) Find the extremal of the functional $\mathrm{I}=\int_{0}^{\pi}\left(y^{\prime 2}-y^{2}\right) \mathrm{d} x$ under the conditions $y=0, x=0, x=\pi, y=1$ subject to the condition $\int_{0}^{\pi} y \mathrm{~d} x=1$.

OR

5. (a) Find the extremal of the functional $\int_{0}^{1}\left(x+y+y^{\prime 2}\right) \mathrm{d} x=0$ under the conditions $y(0)=1$ and $y(1)=2$.
(b) Find the geodesic on a right circular cylinder.

PART - C

Answer two full questions.
6. (a) Evaluate $\int_{C}(x+2 y) \mathrm{d} x+(4-2 x) \mathrm{d} y$ along the curve $\mathrm{C}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ in anticlockwise direction.
(b) Evaluate $\iint_{\mathrm{R}} x y \mathrm{~d} x \mathrm{~d} y$ over the positive quadrant bounded by the circle $x^{2}+y^{2}=1$.

OR

7. (a) Evaluate $\int_{\mathrm{C}}(x+y+z) \mathrm{ds}$, where ' C ' is the line joining the points $(1,2,3)$ and $(4,5,6)$ whose equations are $x=3 \mathrm{t}+1, y=3 \mathrm{t}+2, z=3 \mathrm{t}+3$.
(b) Change the order of integration and hence evaluate $\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} \mathrm{~d} x \mathrm{~d} y$.
8. (a) Find the area $\iint_{\mathrm{S}} \frac{y}{x} e^{x} \mathrm{~d} x \mathrm{~d} y$, where S is bounded by $x=y^{2}$ and $y=x^{2}$.
(b) Find the volume of the tetrahedron by the planes $x=0, y=0, z=0$ and $x+y+z=\mathrm{a}$.

OR

9. (a) Change into polar co-ordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$.
(b) If R is the region bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$. Show that $\iiint_{\mathrm{R}} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\frac{1}{24}$.

PART - D

Answer two full questions.
$2 \times 10=20$
10. (a) State and prove Green's theorem.
(b) Evaluate by Stoke's Theorem $\oint_{\mathrm{C}}(y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z)$, where C is the curve $x^{2}+y^{2}=1, z=y^{2}$.

OR

11. (a) Verify Green's theorem $\oint_{C}\left(3 x^{2}-8 y^{2}\right) \mathrm{d} x+(4 y-6 x y) \mathrm{d} y$, where ' C ' is the region bounded by parabolas $y^{2}=x$ and $x^{2}=y$.
(b) Using divergence theorem, show that:
(i) $\iint_{\mathrm{S}} \overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{n}} \mathrm{ds}=3 \mathrm{~V}$ and
(ii) $\iint_{\mathrm{S}}\left(\nabla \mathrm{r}^{2}\right) \cdot \hat{\mathrm{n}} \mathrm{ds}=6 \mathrm{~V}$
12. (a) Evaluate using Gauss' divergence theorem $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\overrightarrow{\mathrm{F}}=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and S is the total surface of the rectangular parallelopiped bounded by the planes $x=0, y=0, z=0, x=1, y=2, z=3$.
(b) Evaluate $\iint_{\mathrm{S}}(\operatorname{Curl} \overrightarrow{\mathrm{F}}) \cdot \hat{\mathrm{nds}}$ by Stoke's theorem, where $\overrightarrow{\mathrm{F}}=(y-z+2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$ and S is the surface of the cube $0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 2$.

OR

13. (a) Evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{n}} \mathrm{ds}$ using divergence theorem, where $\overrightarrow{\mathrm{F}}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-x z\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ taken over rectangular box $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
(b) Evaluate by Stoke's theorem $\oint_{\mathrm{C}}(\sin z \mathrm{~d} x-\cos x \mathrm{~d} y+\sin y \mathrm{~d} z)$, where C is the boundary of rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1, z=3$.
